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ABSTRACT. Ce rapport est une étude de certains des principaux aspects de l’optimisation
du portefeuille en temps discret. Nous considérons trois des principaux critères et discutons
de la méthode de programmation dynamique ainsi que de la méthode des martingales
en tant que méthodes de solution possibles. Nous élaborons des exemples explicites pour une
fonction d’utilité logarithmique et pour le cas de la binomial complète.
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1 Introduction

La gestion de portefeuille est un aspect fondamental de l’économie et de la finance. Dans
une terminologie financière, le problème de l’optimisation du portefeuille d’un investisseur
négociant différents actifs consiste à choisir un investissement optimal, c’est-à-dire le nombre
d’actions de tel ou tel actif qu’il doit détenir à tout moment de la négociation, afin de maximiser
un certain critère subjectif (dépendant de ses préférences) reposant sur sa richesse totale et/ou
sa consommation.

En ce qui concerne les méthodologies de solution, nous discutons de la méthode de program-
mation dynamique (DP) ainsi que de la méthode dite "martingale methode". Cette dernière
méthode varie selon que le marché est complet ou non, c’est-à-dire selon qu’il existe ou non une
mesure martingale équivalente unique. Comme exemple de marché complet en temps discret,
nous considérons le modèle de marché binomial classique et comme exemple de modèle incomplet
lorsqu’il n’y a qu’un seul actif sous-jacent risqué.

2 Rappel

Nous considérons un marché financier, dans lequel les prix des actifs évoluent en temps discret.
c’est à dire pour t = 1, ..., T sur un espace de probabilité sous-jacent (Ω, F, Ft, P ). C’est un actif
(localement) non risqué, dont le prix évolue comme suit :

Bt+1 = (1 + rt)Bt

où rt est le taux d’intérêt, et un certain nombre K d’actifs risqués dont le vecteur de prix est :

St = (S1
t , ..., S

K
t )

1



Le generique Si
t évolue selon

Si
t+1 = Si

tξ
i
t+1

avec (ξit) i.i.d des séquences de variables aléatoires, en tant que processus, Si
t est Markovien

2.1 Probabilité risque-neutre

Rappelons la notion de probabilité risque neutre. Étant donné la mesure de probabilité P dans
(Ω, F ), une mesure de probabilité Q est dite equivalente à P et on note Q P , si Q a les mêmes
ensembles nuls que P de plus Q est appelée mesure martingale équivalente si tous les actifs du
marché, exprimés en unités de l’actif sans risqe Bt, sont des (Q,Ft) martingales. En d’autres
termes si pour i = 1, ...,K nous avons

EQ

{
Si
t+1

Bi
t+1

|Ft

}
=

St
t

Bt

(1)

ce qui equivaut a

EQ

{
Si
t+1|Ft

}
=

Bt+1

Bt
Si
t = (1 + rt)S

i
t

(2)

2.2 Mesure de Martingale dans le modèle de marché binomial

Nous avons vu qu’une mesure martingale équivalente à P est une mesure Q P sur Ω tel que
(1) soit verifié. En écrivant

q := Q {Xt+1 = 1|Ft }

et avec plus de simplicité rt = r, la relation (1) donne

(qu+ (1− q)d)St = (1 + r)St

On trouve donc

q =
1 + r − d

u− d

Ce q est unique et ∈ (0, 1) à condition que d < 1 + r < u

Soit Ω l’univers du modèle binomial model, et soit ω ∈ Ω on peut écrire

P (ω) = pn(1− p)T−n;Q(ω) = qn(1− q)T−n

tel que pour la dérivée de Radon-Nikodym sur Ω on obtient
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L(ω) =
Q(ω)

P (ω)
= (

q

p
)n(

1− q

1− p
)T−n

(3)

3 Fonction utilité

Nous rappelons tout d’abord la notion standard d’une fonction d’utilité qui, en fonction du
processus de richesse V = (Vt) est telle que

• u(V ) est strictement croissant, strictement concave et differentiable. De plus,

• u′(∞) := limV →∞ u′(V ) = 0 et limV →0+ u′(V ) = ∞

Il sera pratique d’étendre cette définition à V < 0 en mettant u(V ) = −∞

Voici des exemples de fonctions d’utilité (dans l’intervalle V > 0) :

• u(V ) = log(V ) le log-fonction utilite

• u(V ) = V α

α
(0 < α < 1) la fonction d’utilité de puissance pour un investisseur risk-averse

Nous pouvons maintenant considérer trois critères d’investissement :

• Maximisation de l’utilité espérée de la richesse finale

maxE {u(V α
T )} avec V0 = v et α : auto-financement

• Maximisation de l’utilité esperee de la consommation

maxE
{∑T

t=0 β
tu(Ct)

}
avec V0 = v et β ∈ (0, 1) un facteur d’actualisation et (C,α): autofi-

nancement et admissibilité

• Maximisation de l’utilité esperee de la consommation et de la richesse finale

maxE
{∑T

t=0 β
tuc(Ct) + βTup(V

α
T − CT )

}
avec Av qui contient α est auto-financement et pre-

visible, C est non negative, adapte et CT ≤ VT

4 Méthodes de solution

4.1 Programmation dynamique

4.1.1 Contexte generale

Soit Vt, t = 0, 1, ..., T , un processus donné (comme par exemple le processus de valeur de
portefeuille), dont l’évolution dépend du choix d’une ’séquence de contrôle’(équivalente à une
stratégie) πt, t = 0, .., T , adaptée à un filtrage observé donné. Un exemple typique d’une telle
situation est

Vt+1 = Gt(Vt, πt, ξt+1)

, ξti.i.d
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et remarquez que, si πt = πt(Vt), (contrôles de Markov), alors Vt est un processus de Markov.
Le site séquence de contrôle πt est choisie de manière à maximiser un critère (additif dans le
temps), ie

max
π0,...,πT

E

{
T∑

t=0

u(Vt, πt)

}
(4)

avec u(.) une fonction d’utilité (dans les applications traditionnelles de contrôle stochastique, le
dernier terme pour t = T , c’est-à-dire l’utilité terminale, ne dépend pas du contrôle π).

4.1.2 Le principe de la programmation dynamique

La méthode de programmation dynamique (PD) pour obtenir le control maximisant (4) est
basée sur le principe de programmation dynamique, qui est : si un processus est optimal sur
une séquence entière de périodes, alors il doit être optimal sur chaque période. Dans le contexte
général décrit ci-dessus, le principe PD permet de déterminer la séquence optimale π0, ..., πT

par une séquence de minimisations sur les contrôles individuels πt (minimisations scalaires). En
fait, en raison de la Markovianity de πt, Vt et de l’additivité dans le temps du critère,

max
π0,...,πT

E
{∑T

t=0 u(Vt, πt)
}
= max

π0

[u(V0, π0)+E

{
max
π1

[u(V1, π1) + E

{
...+ E

{
max
πT−1

[u(VT−1, πT−1) + Emax
πT

[u(VT , πT )|

VT−1, πT−1 }]|VT−2, πT−2 }...|V1, π1 }]|Vo, π0 }]

4.1.3 Mise en œuvre du principe du PD

La façon dont le principe DP est utilisé pour déterminer le control maximisant (4) est la suivante
suivante. Soit

Ut(v) := max
πt,...,πT

E

{
T∑

s=0

u(Vs, πs)|Vt = v }

(5)

alors le principe DP conduit à l’algorithme DP suivant

 UT (v) = max
πt

u(v, πT )

UT (v) = max
πt

[u(v, πt) + E {Ut+1(Gt(Vt, πt, ξt+1))|Vt = v }]si t < T (6)

qui donne la valeur optimale et le contrôle optimal (obtenu par induction inverse avec maximi-
sation scalaire). Remarquez que l’on a automatiquement πmax

t comme fonction de Vt

4.1.4 Contexte spécifique (utilité esperee de la richesse terminale)

Nous mentionnons ici comment l’algorithme général de programmation dynamique, décrit ci-
dessus, peut être appliqué au cas spécifique de la maximisation de l’utilité esperee de la richesse
finale.
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Nous considérons comme Vt la valeur du portefeuille. Comme contrôle/stratégie nous prenons
πt = (π0

t , π
1
t , ..., π

K
t ) avec

π0
t =

α0
t+1Bt

Vt
, πi

t =
αi
t+1S

i
t

Vt
i=(1,...,K)

ie les fractions de richesse investies dans les différents actifs de manière à ce que

π0
t = 1−

K∑
i=1

πi
t (πi

t ∈ (0, 1))

Rappelons que, par la propriété d’autofinancement,

Vt = α0
tBt +

K∑
i=1

αi
tS

i
t = α0

t+1Bt +

K∑
i=1

αi
t+1S

i
t

et que nous avions supposé que α était prévisible avec

Si
t+! = Si

t .ξ
i
t+1 (ξit i.i.d)

Par la propriété d’autofinancement et les définitions précédentes, on obtient

Vt+1 = Vt + α0
t+1△Bt +

K∑
i=1

αi
t+1△Si

t

= Vt + α0
t+1Btrt +

∑K
i=1 α

i
t+1S

i
t(ξ

i
t+1 − 1) (7)

=Vt + Vt[π
0
t rt +

∑K
i=1 π

i
t(ξ

i
t+1 − 1)]

ie, on a

Vt+1 = Gt(Vt, πt, ξt+1)

avec

Gt(Vt, πt, ξt+1) = Vt[π
0
t (1 + rt) +

K∑
i=1

πi
tξ

i
t+1]

(8)

et maintenant πt = (π1
t , π

2
t , ..., π

K
t )

Dans le cas présent, nous n’avons qu’une utilité terminale, soit

u(Vt, πt) = 0 pour t<T, et u(VT , πT ) = u(Vt)

ce qui implique (il n’y a pas de πT sur lequel maximiser)

Ut(v) := max
πt,...,πT−1

E {U(VT )|Vt = v }
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et l’algorithme PD devient

{
UT (v) = u(v) et pour t<T
Ut(v) = max

πt

E {Ut+1(Gt, (Vt, πt, ξt+1))|Vt = v } (9)

4.2 Méthode de Martingales

4.2.1 Introduction

Rappelons que dans le cas où il n’y a de consommation, le processus de valeur actualisée de
toute stratégie autofinancante est une martingale sous toute mesure martingale (on suppose
implicitement les conditions d’intégrabilité requises sur la stratégie comme verifiées).

La méthode martingale peut être utilisée pour la résolution de problèmes généraux d’optimisation
stochastique, mais elle tire son origine du problème financier de la couverture d’une créance.
Nous verrons ici ce qui est utile à la compréhension de la méthode de la martingale.

La méthode martingale se base sur trois étapes

• Déterminer l’ensemble des valeurs atteignables pour la richesse vT à la date T;

• Déterminer la richesse optimale atteignable v∗T ;

• Déterminer une stratégie autofinancante α∗ telle que V α∗
T = V ∗

T où dans VT on rend explicite
la dépendance entre la richesse terminale et la stratégie α.

Remarquons que cette méthode décompose le problème dynamique initial d’optimisation de
portefeuille (ou tout autre problème d’optimisation dynamique) en un problème statique (déter-
mination de la richesse optimale atteignable) et en un problème de couverture (qui correspond
à un "problème de représentation martingale"). Nous procédons maintenant à une description
des deux premières étapes ; la troisième étape sera illustrée ci-dessous lors de la résolution de
problèmes spécifiques d’optimisation de portefeuille. Plus précisément, nous allons illustrer les
deux premières étapes du problème de maximisation de l’utilité espérée à partir de la richesse
terminale ; pour les deux autres critères d’investissement, ces étapes seront abordées dans la
section 5 suivante.

4.2.2 Première étape : ensemble de valeurs atteignables du portefeuille

Le problème consiste à determiner l’ensemble

νv = {V : V α
T pour une strategie autofinancante et predictible α avec V0 = v } des valeurs at-

teignables du portefeuille à la date T

Si le marché est complet avec une unique probabilité risque neutre Q alors

νv =
{
V : EQ

{
B−1

T V }= v }

4.2.3 Deuxième étape : valeur de portefeuille optimale atteignable

Formellement, le problème est : determiner V ∗ telle que

E {u(V ∗) }≥ E {u(V ) }, ∀V ∈ νv
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Pour résoudre cette deuxième étape nous mentionnerons la méthode basée sur la technique du
multiplicateur de Lagrange. Nous admetterons que V ∗ est effectivement optimal.

Technique du multiplicateur de Lagrange

Cas d’un marché complet - mesure martingale unique Q

Soit L := dQ
dP

et soit λ le multiplicateur de Lagrange. V0 = v est equivalent EQ
{
B−1

T V }= v .
Le problème devient

max
V

[E
{
u(V )

}
−λEQ

{
B−1

T V
}
= max

V
E
{
u(V )− λB−1

T LV }

u(.) etant une fonction d’utilité, nous avons que l’inverse de la dérivée existe et nous la noterons
par I(.) = (u0(.))

−1. D’autre part, maximiser l’espérance du côté droit de (19) équivaut à
maximiser ses arguments pour chaque scénario/état de la nature possible w ∈ Ω. Une condition
necessaire pour cela est que

u′(V ) = λB−1
T L

implique V = I(λB−1
T L)

À cela, nous devons ajouter que le multiplicateur de Lagrange λ doit satisfaire l’equation suivante
(equation de budget) :

EQ[B−1
T I(λB−1

T L)] = v

⇔ v = E
{
LB−1

T I(λB−1
T L) }:= V (λ)

Cela implique que quand V (.) est inversible, λ = V −1(v) et par conséquent on obtient

V ∗ = I(V −1(v)B−1
T L)

Pour illustrer la faisabilité de cette procédure nous considerons le cas d’une fonction log-utilité,
i.e. u(V ) = logV , pour qui I(y) = 1

y

L’equation de budget devient alors

v = E

{
LB−1

T I(λB−1
T L)

}
= E

{
LB−1

T

BT

λL

}
=

1

λ
= V (λ)

cela implique que λ = 1
V

alors la richesse optimale devient

V ∗ = I(B−1
T L) = V L−1BT

5 Le cas de l’utilité logarithmique, calculs explicites

Dans cette section, nous décrirons plus explicitement les différentes étapes requises à la fois
pour la méthode de programmation dynamique que pour la méthode des martingales dans le
cas d’une fonction de log-utilité et pour chacun des trois critères d’investissement. En partic-
ulier, nous montrerons comment réaliser la troisième étape de l’approche martingale, à savoir la
détermination de la stratégie d’investissement optimale. Pour simplifier, nous supposerons sans
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perte de généralité que le prix de l’actif non risqué, qui est utilisé pour compter les différents
autres prix, est Bt = 1 ; puisque nous prenons implicitement B0 = 1, cela revient à supposer
que le taux d’intérêt à court terme est rt0. Comme calculer explicitement les différentes étapes
de la méthode des martingales dépend de manière assez crucialement du choix de la fonction
d’utilité, les calculs par la méthode des martingales sont plus faciles à réaliser la programmation
dynamique (PD) qui est moins dépendante du choix de la fonction d’utilité. Néanmoins, dans
cette section, nous rendrons un peu plus explicites les étapes requises par DP, car cela n’est pas
immédiatement évident pour les deuxième et troisième critères d’investissement. Des calculs
numériques pour des exemples spécifiques sont ensuite présentés dans la section suivante pour
la maximisation de l’utilité de la richesse finale.

5.1 Maximiser l’utilité esperée de la richesse finale

Après avoir rappelé brièvement la forme particulière que prend l’approche de programmation
dynamique dans ce cas (comme mentionné plus haut, pour ce critère d’investissement), nous
allons décrire la forme particulière que prend l’approche martingale dans ce cas et illustrer le
calcul de la stratégie optimale.

5.1.1 Programmation Dynamique

Rappelons (9) l’algorithme de programmation dynamique, à savoir

{
UT (v) = u(v) et pour t<T
Ut(v) = max

πt

E {Ut+1(Gt, (Vt, πt, ξt+1))|Vt = v } (10)

où la dynamique Gt(Vt, πt, ξt+1) a été spécifiée dans (8), à savoir

Gt(Vt, πt, ξt+1) = Vt[π
0
t (1 + rt) +

K∑
i=1

πi
tξ

i
t+1]

Le seul aspect particulier ici est que K = 1 et, en laissant πt = π1
t =

α1
t+1St

Vt
, on a π0

t = (1−πt).
Avec l’interdiction des ventes à découvert,ie en exigeant α1

t > 0, on obtient πt ∈ (0, 1). Puisque
rt = 0, on peut alors ecrire

Gt(Vt, πt, ξt+1) = Vt[1 + πt(ξt+1 − 1)]

5.1.2 Methode de Martingale

En rappelant de la section 3.1 le processus Nt nous avons que NT ∼ b(T, p) et il représente
la v.a qui compte le nombre total de "mouvements ascendants" du processus de prix St. Avec
u(x) = log(x) on a en rappelant que nous prenons Bt = 1,

V ∗ = v(
p

q
)NT (

1− p

1− q
)T−NT

(11)
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et la valeur optimale de l’utilité esperee de la richesse terminale est alors

E

{
u(V ∗)

}
= log(v)− log(

q

p
)E(NT )− log(

1− q

1− p
)(T − E {NT })

= log(v)− pT log( q
p
)− T (1− p)log( 1−q

1−p
)

(12)

5.2 Maximiser l’utilité esperee de la consommation

Comme nous l’avons mentionné dans la sous-section précédente, la méthode de programmation
dynamique ne dépend pas du fait que le marché soit complet ou non, seule la méthode martingale
le fait. Pour le cas présent de l’utilité espérée de la consommation, nous ne considérons donc
pour le modèle de marché binomial complet, comme nous l’avons fait pour l’utilité espérée de
la richesse terminale où cela était motivé par le désir de mieux illustrer les différences possibles.
Ici, nous mentionnons simplement les différences qui apparaissent lorsque nous discutons de la
méthode des martingales elle-même.

5.2.1 Programmation dynamique

On considère à nouveau les actifs risqués sous-jacents K dont les prix sont les suivants

Si
t+1 = Si

t .ξ
i
t+1 i=(1,...,K)

on a, par la condition d’autofinancement pour le cas avec consommation telle que décrite dans
la section 2.2 et en complète analogie avec (7) et (8),

Vt+1 = Vt + α0
t+1△Bt +

K∑
i=1

αi
t+1△Si

t − Ct

= Vt + Vt[π
0
t rt +

∑K
i=1

i
t(ξ

i
t+1 − 1)]− Ct

=Vt[(1 + rt) +
∑K

i=1 π
i
t(ξ

i
t+1 − (1 + rt))]− Ct(1 + rt)

ie on a

Vt+1 = Gt(Vt, πt, ξt+1)

avec

Gt(Vt, πt, ξt+1) = Vt[(1 + rt) +

K∑
i=1

πi
t(ξ

i
t+1 − (1 + rt))]− Ct(1 + rt)

et avec la séquence/stratégie de contrôle

πt = (π1
t , ..., π

K
t , Ct)
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ou, comme en avant, πi
t =

αi
t+1S

i
t

Vt

En concernant la description générale de la méthode de programmation dynamique dans la
section 4.1, dans ce cas, on a

u(Vt, πt) = u(Ct)

avec la contrainte CT ≤ VT

Pour mise en œuvre le principe de programmation dynamique, correspondant ici à (5), on met

Ut(v) := max
ct,...,cT

E

{
T∑

s=t

βs−tu(CS)|Vt = v }

où la condition CT ≤ VT peut être prise en compte en mettant

u(CT ) = −∞ pour CT ≥ VT

alors le principe PD conduit à l’algorithme PD suivant

 UT (v) =

{
u(v) si CT = V
−∞ si CT > V

Ut(v) = max
πt

[u(Ct) + βE {Ut+1(Gt(Vt, πt, ξt+1))|Vt = v }]

où la non-négativité de C est garantie par u(C) = −∞ pour C < 0.

5.2.2 Methode de Martingale

Rappelons que pour la maximisation de l’utilité de la richesse terminale, nous avons besoin de :

• déterminer l’ensemble des valeurs atteignables/réalisables de la richesse en T ;

• déterminer la richesse optimale ;

• déterminer une stratégie d’autofinancement qui reproduit la richesse optimale.

Ici, la richesse terminale est remplacée par le processus de consommation adapté Ct et nous
changeons donc les exigences ci-dessus en les étapes suivantes :

• déterminer l’ensemble des processus de consommation "atteignables" ;

• déterminer le processus de consommation optimal atteignable ;

• déterminer une stratégie d’investissement permettant de consommer selon le processus de
consommation optimal.

Pour mettre en œuvre ces étapes, nous partons du lemme suivant,

LEMME 1. Étant donné une richesse initiale v ≤ 0, un processus de consommation Ct, et une
stratégie d’autofinancement α, on a

Vt

Bt
= v + Ḡt −

t−1∑
s=0

Cs

Bs
t=1,...,T
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(13)

où Ḡt est le processus d’actualisation des gains

Ḡt =

t−1∑
s=0

K∑
i=1

αi
s+1△S̄i

s

Première étape :

Définition 6. Un processus de consommation Ct est dit atteignable si ∃α avec (C,α) admissible
CT = VT (α "réplique" ou "génère" C)

On maintenant que le processus v + Ḡt est une Q-martingale en mettant VT = CT , de (31) on
a immédiatement :

Proposition 2. Étant donné v, un processus de consommation C est réalisable si

v = EQ

{
C0

B0
+ ...+

CT

BT
}

Deuxième étape :

On discutera directement de cette étape pour le cas plus général d’un marché incomplet avec
un nombre fini J de mesures martingales extrémales. Dans le cas présent de maximisation
de l’utilité espérée de la consommation, cette seconde étape consiste à obtenir le processus de
consommation optimal réalisable en résolvant

 max
C

E
{∑T

t=0 β
Tu(Ct) }

sous reserve de EQj
{∑T

t=0
Ct
Bt

}= v
(14)

Remarquez que la seule variable de décision ici est Ct(t = 0, ..., T ) ; αt n’apparaît pas. Remar-
quez également que la non-négativité de Ct est garantie par u(C) = −∞ pour C < 0.

Afin de résoudre le problème (14), définissez N j
t := B−1

t E
{
Lj |Ft } (Lj = dQj

dP
) donc

EQj

{
T∑

t=0

Ct

Bt

}
= E

{
Lj

T∑
t=0

Ct

Bt
}

= E

{∑
t=0

TE

{
B−1

t CtL
j |Ft

}}
= E

{
T∑

t=0

CtN
j
t }

donc (14) devient

 max
C

E
{∑T

t=0 β
Tu(Ct) }

sous reserve de E
{∑T

t=0 CtN
j
t }= v

(15)

En utilisant, comme précédemment, la technique du multiplicateur de Lagrange pour résoudre
(15), on doit calculer
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max
C

E

{
T∑

t=0

βtu(Ct)−
∑
j=1

Jλj

T∑
t=0

CtN
j
t }

Une condition nécessaire pour que Ct maximise, pour chaque scénario, l’argument de la l’espérance
est

βtu′(Ct) =

J∑
j=1

λjN
j
t

ce qui implique

Ct = I(

∑J
j=1 λjN

j
t

βt
)

avec λj satisfaisant le système d’"équations budgétaires"

E

{
T∑

t=0

N j
t I(

∑J
j=1 λjN

j
t

βt
) }= v

et la valeur optimale devient

J(v) = E

{
T∑

t=0

βtu(I(

∑J
j=1 λjN

j
t

βt
)) }

Troisième étape :

En complète analogie avec le cas précédent de l’utilité espérée de la richesse terminale, elle
consiste ici à déterminer la stratégie d’investissement d’un portefeuille autofinancé ayant une
valeur terminale VT = CT , et la procédure elle-même peut être reportée directement à partir de
là.

6 Conclusion

Le but de l’agent est d’obtenir le plus de plus-value pendant la période d’investissement [0,T]
selon une préférence d’utilité qu’il a. Nous avons vu 2 méthodes pour maximiser cette utilité en
temps discret Le cas continue reste à discuter
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