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1 Détermination de la hauteur de la digue a partir des
relevés de mesure historiques

Le but de cette section est de réduire au minimum la probabilité P(H > h,) en fonction de
hg en utilisant les données historiques de mesure de 1849 a 1997. Ces données se composent
de deux ensembles distincts :

— La premieére colonne est constituée des valeurs de débit maximal annuel de crue Q
observées sur une année, sans aucune donnée manquante.
— La deuxiéme colonne se compose des valeurs de hauteur de 1’eau observées H lors

d’une année de crue associé a un débit Q. Certaines de ces données sont manquantes.

La démarche suivie est la suivante :

— Traiter les données manquantes en choisissant une méthode appropriée.

— Modeéliser les données de H comme des réalisations d’une variable aléatoire avec une
loi & déterminer.
— Choisir un quantile de la loi pour évaluer le risque acceptable dans cette problématique.

Ainsi, on cherche une hauteur de digue telle que la probabilité P(X > hy) = ¢, o H
est modélisé par la variable aléatoire X, et ¢ est faible.

1.1 Traiter les données manquantes

Nous devons trouver un moyen de traiter les données manquantes de H car la hauteur
de la digue hy est directement liée aux données de H. Etant donné que nous avons un
petit nombre de données, nous privilégierons 1’ajout des données manquantes plutot que
la suppression de ces données.

Année 2 o
1849 3854
1850 1256 4.0
1851 1649 45
1852 1605 4.3
1853 341 1.7

FIGURE 1 — 5 premiéres lignes de notre donnée

On a constaté qu’il y avait 26 données manquantes sur un total de 149, ce qui représente
environ 17%. De plus, avec les observations initiales, on constate aussi une relation entre
H et Q, ou lorsque Q augmente, H augmente également et vice versa. Pour vérifier cette
relation entre ) et H, nous allons maintenant visualiser 1’évolution de ) et H par rapport
au temps.
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FIGURE 2 — Evolution de Q et H au cours du temps

On peut voir graphiquement que 1’évolution de Q et de H ont de méme tendance. Pour
renforcer cette affirmation, nous allons calculer la corrélation entre ces deux variables. En
calculant la corrélation & partir de la base de données aprés avoir supprimé les valeurs
manquantes, nous obtenons le résultat qui est un peu pres a 0.965, on déduit une forte
corrélation empirique entre QQ et H. Il y a, en ce sens, des possibilités de bien reformer les
données manquantes de H a partir de Q.

1.1.1 Modéle de régression

Aprés visualisations des données H en fonction de (), nous avons décidé de modéliser leur
relation par une régression linéaire.

H=a+0-Q
avec a,b les coefficients & déterminer. Cette méthode a ’avantage d’étre simple a calculer
ainsi qu’a interpréter. De plus, cette méthode est robuste vis a vis des valeurs manquantes
et /ou aberrantes. Par cette méthode, on trouve un coefficient de détermination R? = 0.962,
ce qui indique que 96,2% de la variance de H est expliquée par Q dans le modéle de
régression. Cela suggeére que le modéle est assez bon pour expliquer les données et qu’il y
a une forte corrélation entre H et Q.
Voici la visualisation d'un modéle de régression sur notre base de donnée aprés cette im-
plémentation :



Régression linéaire: H = a + b*Q

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
Q

FIGURE 3 — Régression linéaire de H en fonction de Q

Remarque : d’autres méthodes et modéles auraient pu étre utilisées pour cette imputa-
tion de données. Par exemple, une régression polynomiale collerait mieux a nos données.
Cependant, comme certains facteurs non déterministes peuvent rentrer en jeu pour calcu-
ler H, nous gardons notre modéle robuste plutdét qu’un autre qui serait trop proche des
données historiques.

1.2 Modéliser les données de H

L’objectif de cette partie est de trouver une loi qui modélise bien les données de H. On
trace tout d’abord I'histogramme de H pour avoir un vue générale.

Histogramme de H
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En observant notre histogramme, la hauteur H semble suivre une loi normale. Pour renfor-
cer cette opinion, on utilise donc le test adéquation Kolmogorov-Smirnov, avec un risque
de 5% et le test Shapiro-Wilk pour la loi normale.

Principe du test Kolmogorov-Smirnov :

Le principe est de choisir comme statistique une distance entre fonctions que I'on applique
a Fn et Fo.

Dn = 5upt€R|Fn(t> - FO(t)|

On applique maintenant ce test sur nos données :



one-sample Kolmogorov-Smirnov test

data: dataiH
D = 0.062803, p-value = 0.5993
alternative hypothesis: two-sided

FIGURE 4 — Résultat du test Kolmogorov-Smirnov

On trouve le p-value qui est supérieur a 0.05, cela indique de ne pas rejeter hypothése
nulle, ca veut dire que cette distribution suit la loi normale par rapport & ce test.

Principe du test Shapiro-Wilk
Soit L’échantillon X7, ..., X,, et 2 hypothéses

H, : La loi de I’echantillon est normale
H; : La loi de I’echantillon n’est pas normale

Le test de Shapiro-Wilk consiste & considérer le rapport entre I'estimation de la variance
suivant la droite d’Henry et I'estimation de la variance par I'estimateur habituel.

(T e’
(e zi — )2
ou les a; sont des constantes tabulées. Si la distribution est bien normale, ce rapport doit
etre proche de 1.

On applique maintenant ce test :

Shapiro-wilk normality test

data: datajH
W = 0.99088, p-value = 0.4519

FIGURE 5 — Résultat du test Shapiro-Wilk

On trouve le p-value qui est supérieur a 0.05, cela indique de ne pas rejetter hypothese
nulle, ca veut dire que cette distribution suit la loi normale par raport a ce test. Donc, avec
ces 2 tests, on peut maintenant d’affirmer que :

H ~ N(p, 0?), avec p = 3.95 et 02 = 1.32

2 sont respectivement la moyenne empirique et la variance empirique de nos

ou u et o
données historiques.

1.3 Trouver une hauteur de digue h; de facon & "minimiser le
risque d’inondation"
Dans le premier cas d’étude, ot I'enjeu premier est relatif a la stireté, la variable d’intérét est

directement la hauteur de la surverse et on cherche a dimensionner la hauteur de la digue
hg de sorte & minimiser le risque de débordement, c’est-a-dire de minimiser la probabilité



P(H > hg). L’enjeu étant ici de définir un site “hautement protégé”, nous choisissons un
risque de 1%, qui est un risque classique pour les enjeux de sécurité. On obtient alors en
prenant le quantile 0.99 de la loi normale avec les paramétres ajustés, la hauteur de digue
hg qui est égale 7.03 environ pour que la probabilité P(H < hy) = 99%.



2 Deétermination de la hauteur de la digue & partir a
partir du modeéle hydraulique

Dans cette section, nous allons nous intéresser de maniére plus détaillée aux probabilités
d’inondations qu’on appellera par la suite S en utilisant un modéle plus complexe que dans
la premiére partie. On se basera non seulement seulement sur les données historiques brutes
de la hauteur maximale annuelle d’eau H, mais aussi sur un modéle appelé hydraulique,
qui vise a calculer avec plus de précision cette hauteur.

La formule du modéle inclut certaines variables aléatoires qui suivent des lois de probabilités
courantes, tandis que d’autres composantes du modéle sont déterministes pour simplifier
les calculs. Ainsi, la hauteur maximale d’eau H peut s’exprimer comme :

3
5

Q

st,/@xB

Nous rappelons que le débit maximal @ du cours d’eau (en m?3/s) suit une loi de Gumbel
de paramétres a = 1013 et § = 558. Le coefficient de frottement K, suit quant & lui
une loi normale de moyenne 30 et d’écart-type 7.5. Enfin Z, et Z,, modélisant la cote du
fond suivent tout deux une loi triangulaire d’esperance respective 50 et 55 et de méme
demi-étendue valant 1.

En ajoutant les variables d’environnement /physiques, le calcul de la hauteur de surverse
S s’effectue comme suit :

H =

(1)

S=Z.—Zyg=2,+H—hg— 2 (2)
I'objectif devient donc de trouver hy tel que :
arg min P(S > 0)

hg€RT
2.1 Calcul par le modéle hydraulique et les hypothéses probabi-
listes
Pour estimer la probabilité que la hauteur de surverse est positive en fonction de hg, nous
pouvons supposer que nous n’avons pas de données historiques, mais que nous connaissons

les lois des variables aléatoires qui composent la hauteur maximale d’eau grace a 1’équation
(1), que nous allons utiliser par la suite dans I’équation (2).

. ) . iid
Nous pouvons alors commencer par simuler des échantillons (h"),---  h5)) < H de ma-
niére itérative selon les étapes suivantes :

Boucle : Calcul de la hauteur d’eau maximale
1. L = 5000, B = 300, Z, = 55.5
2. Pour 7 allant de 1 & 100000 :
i. Générer Q avec Q ~ Gumbel(a = 1031, 5 = 558)
ii. Générer K, avec Ky ~ N(30,7.5).
iii. Générer Z,, avec Z,, ~ Triang(a = 54,¢ = 55,b = 56)
iv. Générer Z, avec Z,, ~ Triang(a = 49,¢ = 50,b = 51)
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v. Calculer H en utilisant la formule hydraulique : H = (—Ks \/WB>
Avec notre échantillon (h®,--+  h(5)) et en gardant 'échantillon (Z5", -+, Z8) avec
I’étape iii de notre boucle, on calcule la surverse en fonction de différentes valeurs d’hauteur
de digue hy. Nous pouvons ensuite tracer un graphique de la probabilité empirique de
surverse en fonction de la hauteur de digue.

Probabilité de dépassement en fonction de hd
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Remarque : bien qu’ici une simulation itérative n’est pas nécessaire dii a I’hypothése d’in-
dépendance des lois, cette fagon de faire pourrait étre meilleure avec un modéle hydraulique
plus complexe.

Il est évident que la probabilité de submersion diminue avec I'augmentation de la hauteur
de la digue. Toutefois, la décision finale dépendra du niveau de risque que 1’'on est prét a
accepter. Si ’on souhaite éviter tout risque de submersion et que 1’on cherche la hauteur de
digue qui annule la probabilité P(S > 0), alors cette hauteur sera de 3.9 m. En revanche, si
I’on accepte un niveau de confiance de 99.99% correspondant a une probabilité de surverse
P(S > 0) = 0.1%, alors la hauteur de digue optimale sera de 2 m.

2.2 Calcul par le modéle hydraulique et les données historiques

Dans cette partie, on fait le choix d’utiliser a la fois le modéle hydraulique et les données
historiques a disposition. Nous allons utiliser le modéle hydraulique pour compléter nos
données, remplacant la hauteur H manquante par le modéle hydraulique quand c’est né-
cessaire.Nous avons les données historiques du débit maximal d’eau, nous connaissons les
valeurs déterministes de B et L, ainsi que les lois de probabilités de K, Z,, et Z,.

Par analogie avec le 2.1, nous allons encore utiliser une boucle itérative pour nos données
et imputer les valeurs manquantes.

Boucle : Calcul de la hauteur d’eau maximale manquante
1. L =5000, B =300, Z, = 55.5
2. Pour 7 parcourant les années données :
(a) Si H; = null :

i. Générer K, en utilisant une distribution normale avec une moyenne de 30 et
un écart-type de 7.5.

ii. Générer Z,, en utilisant une distribution triangulaire avec une moyenne de 55
et demi-étendu de 1.



iii. Générer Z, en utilisant une distribution triangulaire avec une moyenne de 50
et demi-étendu de 1.

3/5

iv. Calculer H en utilisant la formule hydraulique : H; = (#\/;Tz%’)
Finalement, maintenant que nous avons les valeurs manquantes de H nous pouvons tracer
un graphique empirique de la probabilité de surverse, tout comme en 2.1 en utilisant
I'équation (2). Pour cela, on génére une unique observation ’aléatoire’ donnant la cote du
fond du cours d’eau Z, pour chaque année, et la substituer dans chaque opération pour
chaque hy. Nous pourrons alors obtenir les probabilités que la hauteur de surverse soit
positive :

Probabilité de dépassement en fonction de hd

0.12

0.10

0.08 A

0.06 -

0.04

Probabilité de dépassement

0.02 A

0.00 -

0.0 0.5 10 15 2.0 25 3.0

Avec une simple opération d’optimisation, nous constatons que la hauteur hy optimale est
de 2.1 m.
Une autre approche possible, consiste a éviter tout risque en prenant la valeur maximale
que Z, peut atteindre pour chaque année. Cela nous donnerait évidemment un résultat
différent :

Probabilité de dépassement en fonction de hd

0.25
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0.10
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Il est clair que la probabilité que la hauteur de surverse S soit positive augmente consi-
dérablement en prenant le pire scénario. Cela rend la hauteur de la digue qui minimise ce
risque beaucoup plus élevée : hy = 2.7 m.

En conclusion, nous avons décidé de garder une hauteur de digue hy = 2.1m, qui semble
étre la solution la plus adaptée a la réalité et a nos hypothése de travail.
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2.3 Calcul par estimation fréquentiste

Dans le méme objectif, nous allons tenter de modéliser la problématique de maniére simi-
laire & la premiére partie. Nous savons que la hauteur de surverse S est composée d'un
mélange de variables aléatoires dont nous connaissons les lois. Supposons que F' = S — hy
soit une variable aléatoire, pour laquelle nous avons des observations de 1849 a 1997. L’ob-
jectif serait ensuite de supposer une loi proche de la distribution historique, puis d’effectuer
un test statistique pour estimer le niveau de confiance que notre variable aléatoire suit ef-
fectivement la distribution empirique de F'. Ensuite, nous estimerons ses paramétres et
déterminerons la valeur de hy correspondant & un certain niveau de risque «, qui vérifie
P (F > hd) = Q.

De la méme maniére que les approche précédentes, nous avons déja les données compléte
de H, il suffit de faire un calcul annuel de F' = Z, + Hy, pour disposer de 149 observa-
tions annuelle. Nous allons regarder 1’histogramme des données et faire une estimation non
paramétrique de la densité de F' a l'aide de la méthode du noyau. Le graphique suivant
illustre cela :

0.25 - —— Densité empirique

Histogramme

0.20

0.15 -

0.10 -

0.05 -

0.00 T T T T T T T
-6 -4 -2 0 2 4 6

FIGURE 6 — Histogramme et densité empirique des observations de F'

En examinant la figure ci-dessous, nous pouvons supposer que F suit une distribution issue
de la famille des lois d’extréme généralisées, typiquement une loi de Gumbel. Cela pourrait
correspondre avec notre densité empirique qui présente une queue légérement lourde a
droite. Cela signifie qu’elle attribue parfois une probabilité non négligeable aux valeurs
extrémes.

Pour vérifier notre hypotheése, nous allons utiliser le test statistique de Kolmogorov-Smirnov,
détaillé dans la premiére partie. Avec un niveau de signification o = 5%, nous obtenons les
résultats suivants :

t-test = 0.08

p-value = 0.27

Etant donné que la valeur p est supérieure au niveau de signification, nous ne pouvons pas
rejeter I’hypothése nulle et concluons que la variable aléatoire F' ne différe pas significati-
vement d’une loi de Gumbel.

La densité de probabilité de la loi de Gumbel est donnée par la formule suivante :

s o (5 e (5)) ®

ou p est le paramétre de localisation et 5 est le paramétre d’échelle. Nous les estimons par
la méthode du maximum de vraisemblance :

11



S|

. ~ 0.5772
B==> (z;—7) =7 5 (4)
=1

ol x; sont les observations, T est la moyenne des observations et n est le nombre d’obser-
vations.

Finalement, apres inférence, nous obtenons les estimations :

~

8 =1.35 L= —2.57
Si nous choisissons un niveau de risque de o = 1%, nous pourrions rechercher hy tel que
P(F > hg) = 0.01. Ainsi, nous obtenons la hauteur de digue hy d’environ 3.6 m.
On constate une valeur de hy trés proche de celle trouvée en 2.1. Finalement, nos trois
maniéres différentes trouvent une hauteur de digue optimale vers les 3 métres.
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3 Deétermination de la hauteur de la digue & partir du
modéle économique

Cette section se concentre sur 'aspect économique de la hauteur de la digue, dans le but
de déterminer la hauteur A, optimale qui permettrait de minimiser le risque économique
associé a la surverse. Plus particuliérement, en gardant les notations du paragraphe 1.6,
on s’intéresse au probléme suivant :
(P) argmin C¢ moyenne
hqa€R*+

Comme indiqué en 1.6, nous allons étudier ce probléme pour une période de 30 ans, c’est
a dire T' = 30. Ainsi, on a :

- Ce(30)
arg min
hde]R+ 30

ou C, est le cotit complet de 'installation industrielle sur une période donnée.
En utilisant les équations (3) a (5) du paragraphe 1.6, on a :

Co(T) = CuT) + Y _Ca (S, ha)

j=1

T
= Ci(hg) + T - Cp(hg) + ch,j<sja ha)

(Cu(S;) + Cy(S), ha))

Nous avons utilisé le fait que le cotit de maintenance C,, est égale & 1 % du cotit d’investis-
sement Cj, C ‘est-a-dire : Cy,(hg) = Cl(o}gd) En utilisant cette expression de C. et en enlevant
la fraction & 7 qui ne change pas la valeur de notre argmin on réécrit (P) :

(P) argmin Ci(ha)(1+ 5) + Z( +(S5) + Cy(S;, ha))

hd€R+
Pour l'instant (P) n’est pas encore résolvable car nous n’avons pas de formules pour les
fonctions de cotit C;, Cs et C,. De plus, la surverse S n’est pas exprimée en fonction de hy.
Nous allons étudier ces points par la suite.

3.1 Les fonctions de coit

Outre les valeurs numériques données pour les différents cotits en fonction de S et de hy,
nous avons les informations suivantes :

e (; est déterministe, fonction de hy, Iy et C; ot C) est le cott linéaire. De plus C; croit
plus fortement que linéairement par rapport a hy, a I'inverse de .

e (, est aussi déterministe, fonction de S.

e (s est croissant par rapport a S mais garde une composante aléatoire.

13



3.1.1 Cout d’investissement

On sait que le cott d’investissement est une fonction se calculant & partir de hg,l; et C
et nous avons des valeurs numériques a notre disposition. De plus, [; et C; peuvent étre
reformulées par rapport a hg ce qui nous donne finalement que C; est de la forme C;(h).

C; en fonction de hy

104

5 T T T T
e Données P
4 | |— Regression
3 [ |
s

2 [ -
1 [ |
0

0 2 4 6 8 10

ha

Au vu des valeurs de C; en fonction de hy, nous avons opté pour une simple régression
linéaire simple. Le coefficient R? obtenu est de 0.996 avec le coefficient : 4895.872 et I'in-
tercepte —2851.205. Pour palier 'erreur d’approximation quand A, est trop petit, on rem-
placera les cotits négatifs par 0. On a donc finalement (en milliers d’euros) :

C;(hg) = max{0, 4895 - hy — 2851.05}

3.1.2 Coit des dommages de la digue

Voici le tableau des cotits des dommages de la digue en fonction de la surverse S :
C, fonction de §

[ [ [ [ [
100 | ® Données
—— Régression |/
80 |- 2
> 60 [ |
b { ]

40 - :
20 | 2

a | | | |

0 0.5 1 1.5 2

S

Au vu des données, nous avons fait une régression linéaire pour S <= 1 pour avoir l'ex-
pression finale suivante :

Cy(S, ha) = (1[0.1,1](5)(89.61 -5 +8.63) + 100 - 1]1,OO[<S)) Ci(hqg)

14



3.1.3 Coiut des dommages du site

Comme C; est croissant par rapport & S mais garde une composante aléatoire, il est difficile
de donner une bonne approximation de la fonction. De plus, ayant peu de données et
ne connaissant pas la nature de la composante aléatoire, il est difficile de savoir a quoi
ressemble réellement la fonction. Néanmoins, nous savons les choses suivantes : Cs(S) =0
pour S < —0.1 et Cs(S) = 2000 M€ pour S >= 2. Une fonction sigmoide permet de bien
prendre en compte ces informations et nous avons donc opté pour une telle fonction bien
qu’elle s’accorde trop avec les données connues.

C, en fonction de S

2,000 [ — —
e Données
— Sigmoide
1,500 |- :
1,000 | |
500 |- :
0 Le | |

Ainsi, ne connaissant pas la nature de la composante aléatoire, on retient :

2009
C&(S)::1_%exp{_(5-—085)ﬂ114}

3.2 Exploitation du modéle hydraulique

Avant de pouvoir résoudre notre probléme d’optimisation, il faut relier la hauteur de digue
hq et le risque de surverse S et donc pouvoir connaitre Cy et C, en fonction de hy.
Malheureusement 'equation S = Z. — Z; = Z, + H — hy — Z, reliant la hauteur hy a la
surverse S comporte des variables stochastiques.

Une premiére approche serait de faire une minimisation stochastique de la forme :

arg min ES [Cc,moyenne]
hg€RT

en utilisant les densités des lois aléatoires composants S. Cependant, cette méthode semble
difficile d’accés comme S est un mélange de lois. Nous allons donc opter pour une discré-
tisation du probléme par estimateur de Monte Carlo. Grace au données apportées par le

iid

modéle hydraulique et en générant (z), ... 25)) X Z + H — Z, on a la minimisation

suivante :
K
(P) argmin Cj(hq)(1 4+ 2%) + 323" (Cy(z®™ — hg) + Cy(z™ — hg, hg))
hd€R+ k=1
Grace aux lois données dans le paragraphe 1.3 et la partie II de notre projet, nous pouvons
simuler nos variables aléatoires et donc résoudre notre probléme.
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3.2.1 Génération de notre échantillon

Comme dit précédemment, il faut qu’on approche X = Z, + H — Z,, avec Z, et H qui
sont des variables aléatoires. Un dernier probléme qui se pose est le choix du nombre
d’échantillons K pour approximer X. Evidemment, plus K est grand, plus nous sommes
précis. Cependant cela impact le temps de calcul de la simulation mais surtout celle de la
résolution du probléme de minimisation.

Fréquence

o 4
= -
o wn

o
=}
o

o
o
=]

. T
-2 0 2 4 6
X=Zv+H-Zb

|
-

|
s

FIGURE 7 — Simulation de 10° échantillons de X = Z, + H — Z,

Remarque : Nous avons tronquer les valeurs extrémes, pour avoir une valeur maximale &
10, pour des soucis de représentation de I’histogramme.

Informations statistiques : Voici certaines informations sur notre échantillon X =
(zM ... ) % Z,+ H— 7, avec K = 106.

Moyenne : —2.96, médiane : —3.06, déviation standard : 1.20, ,max : 146.96, min : —6.28.
Pourcentage de valeurs au dessus de -0.1 : 1.25%.

Ce dernier pourcentage est important car il correspond & une surverse de —0.1 si hy = 0
et c’est le seuil a partir du quel le cotit des dégats sur la digue est non nul.

3.3 Reésolution du probléme économique

Maintenant que nous avons 'expression des différents cotlits en rapport avec la hauteur de
la digue et la surverse, il nous reste plus qu’a résoudre algorithmiquement notre probléme
de minimisation.

Comme dit précédemment, on va pour cela générer X = (2D ... ) X ~ Zy+ H — 7,
avec K = 10% pour approximer notre fonction de cotit puis trouver son minimum.

Pour tout k tel que 2*) < —0.1, on a Cy(zx, ha) = Ca(zk, ha) = 0 quel que soit la hauteur
de digue hg. Pour réduire notre temps de calcul, on note (y(l), syl = {:c(’“); ) >=
—0.1,k =1--- K} ou L est la longueur de ce vecteur, et p = L/K la proportion des valeurs
utiles pour notre calcul de cofit.

Finalement en exploitant ces informations on reformule une derniére fois (P) :

L
P 1+ —
(P) aidg;lglin Ci(hg)(1 + 100 +p g — hg) + C ( hd,hd))



Voyons maintenant notre fonction de cotit grace a notre formulation et notre estimateur
de Monte Carlo.

leg

Colit C_c,moyenne
N w S w (=]
) 1 !

[
L

hd

FIGURE 8 — Simulation de Monte Carlo pour le cotit, K = 10°

Remarque : Cette derniére formulation de (P) & réduit drastiquement le temps pour
évaluer notre fonctinon de cotit, passant de 3 minutes & 3 secondes. Ainsi comme notre
estimateur de Monte Carlo est trés rapide, nous n’avons pas besoin de réduire le nombre
d’échantillons et de faire des compromis entre la précision et le temps de calcul.

Finalement, on trouve que (P) est égale a 4.9 métres, c’est a dire que d’aprés le modéle
économique étudié sur une période de 30 ans, il faudrait prendre hy = 4.9 métres.

A premiére vue, ce résultat semble haut sachant que le modeéle hydraulique nous informe
que la probabilité d’avoir une surverse quand hy; > 3.9 est quasiment nulle. Cependant,
nous avons ici étudié le colit Cg moyenne Sur une période de 30 ans, ce qui multiplie le risque
de surverse sur cette période par 30. De plus, les coiits de dommages sont d’un ordre de
grandeur de 10? fois plus grands que ceux de construction de la digue. Ainsi dans ce modéle
économogqie, les risques de surverses doivent absolument étre écartés. Cela se retranscrit
aussi sur la forme de notre fonction de cotit figure 7.
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