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1 Détermination de la hauteur de la digue à partir des
relevés de mesure historiques

Le but de cette section est de réduire au minimum la probabilité P (H > hd) en fonction de
hd en utilisant les données historiques de mesure de 1849 à 1997. Ces données se composent
de deux ensembles distincts :

— La première colonne est constituée des valeurs de débit maximal annuel de crue Q
observées sur une année, sans aucune donnée manquante.

— La deuxième colonne se compose des valeurs de hauteur de l’eau observées H lors
d’une année de crue associé à un débit Q. Certaines de ces données sont manquantes.

La démarche suivie est la suivante :

— Traiter les données manquantes en choisissant une méthode appropriée.
— Modéliser les données de H comme des réalisations d’une variable aléatoire avec une

loi à déterminer.
— Choisir un quantile de la loi pour évaluer le risque acceptable dans cette problématique.

Ainsi, on cherche une hauteur de digue telle que la probabilité P (X > hd) = q, où H
est modélisé par la variable aléatoire X, et q est faible.

1.1 Traiter les données manquantes

Nous devons trouver un moyen de traiter les données manquantes de H car la hauteur
de la digue hd est directement liée aux données de H. Étant donné que nous avons un
petit nombre de données, nous privilégierons l’ajout des données manquantes plutôt que
la suppression de ces données.

Figure 1 – 5 premières lignes de notre donnée

On a constaté qu’il y avait 26 données manquantes sur un total de 149, ce qui représente
environ 17%. De plus, avec les observations initiales, on constate aussi une relation entre
H et Q, où lorsque Q augmente, H augmente également et vice versa. Pour vérifier cette
relation entre Q et H, nous allons maintenant visualiser l’évolution de Q et H par rapport
au temps.
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(a) Graphe de H (b) Graphe de Q

Figure 2 – Évolution de Q et H au cours du temps

On peut voir graphiquement que l’évolution de Q et de H ont de même tendance. Pour
renforcer cette affirmation, nous allons calculer la corrélation entre ces deux variables. En
calculant la corrélation à partir de la base de données après avoir supprimé les valeurs
manquantes, nous obtenons le résultat qui est un peu près à 0.965, on déduit une forte
corrélation empirique entre Q et H. Il y a, en ce sens, des possibilités de bien reformer les
données manquantes de H à partir de Q.

1.1.1 Modèle de régression

Après visualisations des données H en fonction de Q, nous avons décidé de modéliser leur
relation par une régression linéaire.

H = a+ b ·Q
avec a,b les coefficients à déterminer. Cette méthode à l’avantage d’être simple à calculer
ainsi qu’a interpréter. De plus, cette méthode est robuste vis à vis des valeurs manquantes
et/ou aberrantes. Par cette méthode, on trouve un coefficient de détermination R2 = 0.962,
ce qui indique que 96, 2% de la variance de H est expliquée par Q dans le modèle de
régression. Cela suggère que le modèle est assez bon pour expliquer les données et qu’il y
a une forte corrélation entre H et Q.
Voici la visualisation d’un modèle de régression sur notre base de donnée après cette im-
plémentation :
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Figure 3 – Régression linéaire de H en fonction de Q

Remarque : d’autres méthodes et modèles auraient pu être utilisées pour cette imputa-
tion de données. Par exemple, une régression polynomiale collerait mieux à nos données.
Cependant, comme certains facteurs non déterministes peuvent rentrer en jeu pour calcu-
ler H, nous gardons notre modèle robuste plutôt qu’un autre qui serait trop proche des
données historiques.

1.2 Modéliser les données de H

L’objectif de cette partie est de trouver une loi qui modélise bien les données de H. On
trace tout d’abord l’histogramme de H pour avoir un vue générale.

En observant notre histogramme, la hauteur H semble suivre une loi normale. Pour renfor-
cer cette opinion, on utilise donc le test adéquation Kolmogorov-Smirnov, avec un risque
de 5% et le test Shapiro-Wilk pour la loi normale.

Principe du test Kolmogorov-Smirnov :
Le principe est de choisir comme statistique une distance entre fonctions que l’on applique
à Fn et F0.

Dn = supt∈R|Fn(t)− F0(t)|
On applique maintenant ce test sur nos données :

5



Figure 4 – Résultat du test Kolmogorov-Smirnov

On trouve le p-value qui est supérieur à 0.05, cela indique de ne pas rejeter hypothèse
nulle, ca veut dire que cette distribution suit la loi normale par rapport à ce test.

Principe du test Shapiro-Wilk

Soit L’échantillon X1, ..., Xn et 2 hypothèses

H0 : La loi de l’echantillon est normale
H1 : La loi de l’echantillon n’est pas normale

Le test de Shapiro-Wilk consiste à considérer le rapport entre l’estimation de la variance
suivant la droite d’Henry et l’estimation de la variance par l’estimateur habituel.

W =
(
∑n

i=1 aixi)
2

(
∑n

i=1 xi − x)2

ou les ai sont des constantes tabulées. Si la distribution est bien normale, ce rapport doit
etre proche de 1.

On applique maintenant ce test :

Figure 5 – Résultat du test Shapiro-Wilk

On trouve le p-value qui est supérieur à 0.05, cela indique de ne pas rejetter hypothese
nulle, ca veut dire que cette distribution suit la loi normale par raport à ce test. Donc, avec
ces 2 tests, on peut maintenant d’affirmer que :

H ∼ N (µ, σ2), avec µ = 3.95 et σ2 = 1.32

où µ et σ2 sont respectivement la moyenne empirique et la variance empirique de nos
données historiques.

1.3 Trouver une hauteur de digue hd de façon à "minimiser le
risque d’inondation"

Dans le premier cas d’étude, où l’enjeu premier est relatif à la sûreté, la variable d’intérêt est
directement la hauteur de la surverse et on cherche à dimensionner la hauteur de la digue
hd de sorte à minimiser le risque de débordement, c’est-à-dire de minimiser la probabilité
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P (H > hd). L’enjeu étant ici de définir un site “hautement protégé”, nous choisissons un
risque de 1%, qui est un risque classique pour les enjeux de sécurité. On obtient alors en
prenant le quantile 0.99 de la loi normale avec les paramètres ajustés, la hauteur de digue
hd qui est égale 7.03 environ pour que la probabilité P (H ≤ hd) = 99%.
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2 Détermination de la hauteur de la digue à partir à
partir du modèle hydraulique

Dans cette section, nous allons nous intéresser de manière plus détaillée aux probabilités
d’inondations qu’on appellera par la suite S en utilisant un modèle plus complexe que dans
la première partie. On se basera non seulement seulement sur les données historiques brutes
de la hauteur maximale annuelle d’eau H, mais aussi sur un modèle appelé hydraulique,
qui vise à calculer avec plus de précision cette hauteur.
La formule du modèle inclut certaines variables aléatoires qui suivent des lois de probabilités
courantes, tandis que d’autres composantes du modèle sont déterministes pour simplifier
les calculs. Ainsi, la hauteur maximale d’eau H peut s’exprimer comme :

H =

 Q

Ks×
√

Zm−Zv
L

×B

 3
5

(1)

Nous rappelons que le débit maximal Q du cours d’eau (en m3/s) suit une loi de Gumbel
de paramètres α = 1013 et β = 558. Le coefficient de frottement Ks suit quant à lui
une loi normale de moyenne 30 et d’écart-type 7.5. Enfin Zv et Zm modélisant la cote du
fond suivent tout deux une loi triangulaire d’esperance respective 50 et 55 et de même
demi-étendue valant 1.
En ajoutant les variables d’environnement/physiques, le calcul de la hauteur de surverse
S s’effectue comme suit :

S = Zc − Zd = Zv +H − hd − Zb (2)

l’objectif devient donc de trouver hd tel que :
argmin
hd∈R+

P(S > 0)

2.1 Calcul par le modèle hydraulique et les hypothèses probabi-
listes

Pour estimer la probabilité que la hauteur de surverse est positive en fonction de hd, nous
pouvons supposer que nous n’avons pas de données historiques, mais que nous connaissons
les lois des variables aléatoires qui composent la hauteur maximale d’eau grâce à l’équation
(1), que nous allons utiliser par la suite dans l’équation (2).
Nous pouvons alors commencer par simuler des échantillons (h(1), · · · , h(K))

iid∼ H de ma-
nière itérative selon les étapes suivantes :

Boucle : Calcul de la hauteur d’eau maximale

1. L = 5000, B = 300, Zb = 55.5

2. Pour i allant de 1 à 100000 :

i. Générer Q avec Q ∼ Gumbel(α = 1031, β = 558)

ii. Générer Ks avec Ks ∼ N(30, 7.5).
iii. Générer Zm avec Zm ∼ Triang(a = 54, c = 55, b = 56)

iv. Générer Zv avec Zm ∼ Triang(a = 49, c = 50, b = 51)
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v. Calculer H en utilisant la formule hydraulique : H =
(

Q

Ks
√

Zm−Zv
L

B

)3/5

Avec notre échantillon (h(1), · · · , h(K)) et en gardant l’échantillon (Z
(1)
v , · · · , Z(K)

v ) avec
l’étape iii de notre boucle, on calcule la surverse en fonction de différentes valeurs d’hauteur
de digue hd. Nous pouvons ensuite tracer un graphique de la probabilité empirique de
surverse en fonction de la hauteur de digue.

Remarque : bien qu’ici une simulation itérative n’est pas nécessaire dû à l’hypothèse d’in-
dépendance des lois, cette façon de faire pourrait être meilleure avec un modèle hydraulique
plus complexe.
Il est évident que la probabilité de submersion diminue avec l’augmentation de la hauteur
de la digue. Toutefois, la décision finale dépendra du niveau de risque que l’on est prêt à
accepter. Si l’on souhaite éviter tout risque de submersion et que l’on cherche la hauteur de
digue qui annule la probabilité P (S > 0), alors cette hauteur sera de 3.9 m. En revanche, si
l’on accepte un niveau de confiance de 99.99% correspondant à une probabilité de surverse
P (S > 0) = 0.1%, alors la hauteur de digue optimale sera de 2 m.

2.2 Calcul par le modèle hydraulique et les données historiques

Dans cette partie, on fait le choix d’utiliser à la fois le modèle hydraulique et les données
historiques à disposition. Nous allons utiliser le modèle hydraulique pour compléter nos
données, remplaçant la hauteur H manquante par le modèle hydraulique quand c’est né-
cessaire.Nous avons les données historiques du débit maximal d’eau, nous connaissons les
valeurs déterministes de B et L, ainsi que les lois de probabilités de Ks, Zm et Zv.
Par analogie avec le 2.1, nous allons encore utiliser une boucle itérative pour nos données
et imputer les valeurs manquantes.

Boucle : Calcul de la hauteur d’eau maximale manquante

1. L = 5000, B = 300, Zb = 55.5

2. Pour i parcourant les années données :
(a) Si Hi = null :

i. Générer Ks en utilisant une distribution normale avec une moyenne de 30 et
un écart-type de 7.5.

ii. Générer Zm en utilisant une distribution triangulaire avec une moyenne de 55
et demi-étendu de 1.
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iii. Générer Zv en utilisant une distribution triangulaire avec une moyenne de 50
et demi-étendu de 1.

iv. Calculer H en utilisant la formule hydraulique : Hi =
(

Qi

Ks
√

Zm−Zv
L

B

)3/5

Finalement, maintenant que nous avons les valeurs manquantes de H nous pouvons tracer
un graphique empirique de la probabilité de surverse, tout comme en 2.1 en utilisant
l’équation (2). Pour cela, on génère une unique observation ’aléatoire’ donnant la cote du
fond du cours d’eau Zv pour chaque année, et la substituer dans chaque opération pour
chaque hd. Nous pourrons alors obtenir les probabilités que la hauteur de surverse soit
positive :

Avec une simple opération d’optimisation, nous constatons que la hauteur hd optimale est
de 2.1 m.
Une autre approche possible, consiste à éviter tout risque en prenant la valeur maximale
que Zv peut atteindre pour chaque année. Cela nous donnerait évidemment un résultat
diffèrent :

Il est clair que la probabilité que la hauteur de surverse S soit positive augmente consi-
dérablement en prenant le pire scénario. Cela rend la hauteur de la digue qui minimise ce
risque beaucoup plus élevée : hd = 2.7 m.
En conclusion, nous avons décidé de garder une hauteur de digue hd = 2.1m, qui semble
être la solution la plus adaptée à la réalité et à nos hypothèse de travail.
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2.3 Calcul par estimation fréquentiste

Dans le même objectif, nous allons tenter de modéliser la problématique de manière simi-
laire à la première partie. Nous savons que la hauteur de surverse S est composée d’un
mélange de variables aléatoires dont nous connaissons les lois. Supposons que F = S − hd

soit une variable aléatoire, pour laquelle nous avons des observations de 1849 à 1997. L’ob-
jectif serait ensuite de supposer une loi proche de la distribution historique, puis d’effectuer
un test statistique pour estimer le niveau de confiance que notre variable aléatoire suit ef-
fectivement la distribution empirique de F . Ensuite, nous estimerons ses paramètres et
déterminerons la valeur de hd correspondant à un certain niveau de risque α, qui vérifie
P (F > hd) = α.
De la même manière que les approche précédentes, nous avons déjà les données complète
de H, il suffit de faire un calcul annuel de F = Zv + HZb pour disposer de 149 observa-
tions annuelle. Nous allons regarder l’histogramme des données et faire une estimation non
paramétrique de la densité de F à l’aide de la méthode du noyau. Le graphique suivant
illustre cela :

Figure 6 – Histogramme et densité empirique des observations de F

En examinant la figure ci-dessous, nous pouvons supposer que F suit une distribution issue
de la famille des lois d’extrême généralisées, typiquement une loi de Gumbel. Cela pourrait
correspondre avec notre densité empirique qui présente une queue légèrement lourde à
droite. Cela signifie qu’elle attribue parfois une probabilité non négligeable aux valeurs
extrêmes.
Pour vérifier notre hypothèse, nous allons utiliser le test statistique de Kolmogorov-Smirnov,
détaillé dans la première partie. Avec un niveau de signification α = 5%, nous obtenons les
résultats suivants :
t-test = 0.08
p-value = 0.27
Étant donné que la valeur p est supérieure au niveau de signification, nous ne pouvons pas
rejeter l’hypothèse nulle et concluons que la variable aléatoire F ne diffère pas significati-
vement d’une loi de Gumbel.
La densité de probabilité de la loi de Gumbel est donnée par la formule suivante :

f(x) =
1

β
exp

(
−x− µ

β
− exp

(
−x− µ

β

))
(3)

où µ est le paramètre de localisation et β est le paramètre d’échelle. Nous les estimons par
la méthode du maximum de vraisemblance :
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β̂ =
1

n

n∑
i=1

(xi − x) µ̂ = x− 0.5772

β̂
(4)

où xi sont les observations, x est la moyenne des observations et n est le nombre d’obser-
vations.
Finalement, après inférence, nous obtenons les estimations :

β̂ = 1.35 µ̂ = −2.57

Si nous choisissons un niveau de risque de α = 1%, nous pourrions rechercher hd tel que
P (F > hd) = 0.01. Ainsi, nous obtenons la hauteur de digue hd d’environ 3.6 m.
On constate une valeur de hd très proche de celle trouvée en 2.1. Finalement, nos trois
manières différentes trouvent une hauteur de digue optimale vers les 3 mètres.
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3 Détermination de la hauteur de la digue à partir du
modèle économique

Cette section se concentre sur l’aspect économique de la hauteur de la digue, dans le but
de déterminer la hauteur hd optimale qui permettrait de minimiser le risque économique
associé à la surverse. Plus particulièrement, en gardant les notations du paragraphe 1.6,
on s’intéresse au problème suivant :

(P) argmin
hd∈R+

Cc,moyenne

Comme indiqué en 1.6, nous allons étudier ce problème pour une période de 30 ans, c’est
à dire T = 30. Ainsi, on a :

argmin
hd∈R+

Cc(30)

30

où Cc est le coût complet de l’installation industrielle sur une période donnée.
En utilisant les équations (3) à (5) du paragraphe 1.6, on a :

Cc(T ) = Ct(T ) +
T∑

j=1

Cd,j(Sj, hd)

= Ci(hd) + T · Cm(hd) +
T∑

j=1

Cd,j(Sj, hd)

= Ci(hd)(1 +
T

100
) +

T∑
j=1

Cd,j(Sj, hd)

= Ci(hd)(1 +
T

100
) +

T∑
j=1

(
Cs(Sj) + Cg(Sj, hd)

)

Nous avons utilisé le fait que le coût de maintenance Cm est égale à 1 % du coût d’investis-
sement Ci, c’est-à-dire : Cm(hd) =

Ci(hd)
100

. En utilisant cette expression de Cc et en enlevant
la fraction 1

T
qui ne change pas la valeur de notre argmin on réécrit (P) :

(P) argmin
hd∈R+

Ci(hd)(1 +
30
100

) +
30∑
j=1

(
Cs(Sj) + Cg(Sj, hd)

)
Pour l’instant (P) n’est pas encore résolvable car nous n’avons pas de formules pour les
fonctions de coût Ci, Cs et Cg. De plus, la surverse S n’est pas exprimée en fonction de hd.
Nous allons étudier ces points par la suite.

3.1 Les fonctions de coût

Outre les valeurs numériques données pour les différents coûts en fonction de S et de hd,
nous avons les informations suivantes :
• Ci est déterministe, fonction de hd, ld et Cl où Cl est le coût linéaire. De plus Cl croit
plus fortement que linéairement par rapport à hd, à l’inverse de ld.
• Cg est aussi déterministe, fonction de S.
• Cs est croissant par rapport à S mais garde une composante aléatoire.
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3.1.1 Coût d’investissement

On sait que le coût d’investissement est une fonction se calculant à partir de hd, ld et Cl

et nous avons des valeurs numériques à notre disposition. De plus, ld et Cl peuvent être
reformulées par rapport à hd ce qui nous donne finalement que Ci est de la forme Ci(h).

0 2 4 6 8 10
0

1

2

3

4

5
·104

hd

C
i

Ci en fonction de hd

Données
Regression

Au vu des valeurs de Ci en fonction de hd, nous avons opté pour une simple régression
linéaire simple. Le coefficient R2 obtenu est de 0.996 avec le coefficient : 4895.872 et l’in-
tercepte −2851.205. Pour palier l’erreur d’approximation quand hd est trop petit, on rem-
placera les coûts négatifs par 0. On a donc finalement (en milliers d’euros) :

Ci(hd) = max{0, 4895 · hd − 2851.05}

3.1.2 Coût des dommages de la digue

Voici le tableau des coûts des dommages de la digue en fonction de la surverse S :

0 0.5 1 1.5 2
0

20

40

60

80

100

S

C
g

Cg fonction de S

Données
Régression

Au vu des données, nous avons fait une régression linéaire pour S <= 1 pour avoir l’ex-
pression finale suivante :

Cg(S, hd) =

(
1[−0.1,1](S)(89.61 · S + 8.63) + 100 · 1]1,∞[(S)

)
Ci(hd)
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3.1.3 Coût des dommages du site

Comme Cs est croissant par rapport à S mais garde une composante aléatoire, il est difficile
de donner une bonne approximation de la fonction. De plus, ayant peu de données et
ne connaissant pas la nature de la composante aléatoire, il est difficile de savoir à quoi
ressemble réellement la fonction. Néanmoins, nous savons les choses suivantes : Cs(S) = 0
pour S < −0.1 et Cs(S) = 2000 M€ pour S >= 2. Une fonction sigmoïde permet de bien
prendre en compte ces informations et nous avons donc opté pour une telle fonction bien
qu’elle s’accorde trop avec les données connues.

0 0.5 1 1.5 2
0

500

1,000

1,500

2,000

S

C
g

Cs en fonction de S

Données
Sigmoïde

Ainsi, ne connaissant pas la nature de la composante aléatoire, on retient :

Cs(S) =
2009

1 + exp{−(S − 0.85)/0.14}

3.2 Exploitation du modèle hydraulique

Avant de pouvoir résoudre notre problème d’optimisation, il faut relier la hauteur de digue
hd et le risque de surverse S et donc pouvoir connaître Cs et Cg en fonction de hd.
Malheureusement l’equation S = Zc − Zd = Zv + H − hd − Zb reliant la hauteur hd à la
surverse S comporte des variables stochastiques.
Une première approche serait de faire une minimisation stochastique de la forme :

argmin
hd∈R+

ES[Cc,moyenne]

en utilisant les densités des lois aléatoires composants S. Cependant, cette méthode semble
difficile d’accès comme S est un mélange de lois. Nous allons donc opter pour une discré-
tisation du problème par estimateur de Monte Carlo. Grâce au données apportées par le
modèle hydraulique et en générant (x(1), · · · , x(K))

iid∼ Zv + H − Zb on a la minimisation
suivante :

(P) argmin
hd∈R+

Ci(hd)(1 +
30
100

) + 30
K

K∑
k=1

(
Cs(x

(k) − hd) + Cg(x
(k) − hd, hd)

)
Grâce aux lois données dans le paragraphe 1.3 et la partie II de notre projet, nous pouvons
simuler nos variables aléatoires et donc résoudre notre problème.
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3.2.1 Génération de notre échantillon

Comme dit précédemment, il faut qu’on approche X = Zv + H − Zb avec Zv et H qui
sont des variables aléatoires. Un dernier problème qui se pose est le choix du nombre
d’échantillons K pour approximer X. Evidemment, plus K est grand, plus nous sommes
précis. Cependant cela impact le temps de calcul de la simulation mais surtout celle de la
résolution du problème de minimisation.

Figure 7 – Simulation de 106 échantillons de X = Zv +H − Zb

Remarque : Nous avons tronquer les valeurs extrêmes, pour avoir une valeur maximale à
10, pour des soucis de représentation de l’histogramme.

Informations statistiques : Voici certaines informations sur notre échantillon X̂ =

(x(1), · · · , x(K))
iid∼ Zv +H − Zb avec K = 106.

Moyenne : −2.96, médiane : −3.06, déviation standard : 1.20, ,max : 146.96, min : −6.28.
Pourcentage de valeurs au dessus de -0.1 : 1.25%.

Ce dernier pourcentage est important car il correspond à une surverse de −0.1 si hd = 0
et c’est le seuil à partir du quel le coût des dégâts sur la digue est non nul.

3.3 Résolution du problème économique

Maintenant que nous avons l’expression des différents coûts en rapport avec la hauteur de
la digue et la surverse, il nous reste plus qu’à résoudre algorithmiquement notre problème
de minimisation.
Comme dit précédemment, on va pour cela générer X̂ = (x(1), · · · , x(K))

iid∼ Zv + H − Zb

avec K = 106 pour approximer notre fonction de coût puis trouver son minimum.

Pour tout k tel que x(k) < −0.1, on a Cs(xk, hd) = Cd(xk, hd) = 0 quel que soit la hauteur
de digue hd. Pour réduire notre temps de calcul, on note (y(1), · · · , y(L)) := {x(k);x(k) >=
−0.1, k = 1 · · ·K} où L est la longueur de ce vecteur, et p = L/K la proportion des valeurs
utiles pour notre calcul de coût.
Finalement en exploitant ces informations on reformule une dernière fois (P) :

(P) argmin
hd∈R+

Ci(hd)(1 +
30

100
) + p

30

L

L∑
l=1

(
Cs(y

(l) − hd) + Cg(x
(l) − hd, hd)

)

16



Voyons maintenant notre fonction de coût grâce à notre formulation et notre estimateur
de Monte Carlo.

Figure 8 – Simulation de Monte Carlo pour le coût, K = 106

Remarque : Cette dernière formulation de (P) à réduit drastiquement le temps pour
évaluer notre fonctinon de coût, passant de 3 minutes à 3 secondes. Ainsi comme notre
estimateur de Monte Carlo est très rapide, nous n’avons pas besoin de réduire le nombre
d’échantillons et de faire des compromis entre la précision et le temps de calcul.

Finalement, on trouve que (P ) est égale à 4.9 mètres, c’est à dire que d’après le modèle
économique étudié sur une période de 30 ans, il faudrait prendre hd = 4.9 mètres.
A première vue, ce résultat semble haut sachant que le modèle hydraulique nous informe
que la probabilité d’avoir une surverse quand hd > 3.9 est quasiment nulle. Cependant,
nous avons ici étudié le coût Cc,moyenne sur une période de 30 ans, ce qui multiplie le risque
de surverse sur cette période par 30. De plus, les coûts de dommages sont d’un ordre de
grandeur de 102 fois plus grands que ceux de construction de la digue. Ainsi dans ce modèle
économoqie, les risques de surverses doivent absolument être écartés. Cela se retranscrit
aussi sur la forme de notre fonction de coût figure 7.
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